This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ifel

Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005)

Ref Expression
Assertion ifel if φ A B C φ A C ¬ φ B C

Proof

Step Hyp Ref Expression
1 eleq1 if φ A B = A if φ A B C A C
2 eleq1 if φ A B = B if φ A B C B C
3 1 2 elimif if φ A B C φ A C ¬ φ B C