This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
icoun
Metamath Proof Explorer
Description: The union of two adjacent left-closed right-open real intervals is a
left-closed right-open real interval. (Contributed by Paul Chapman , 15-Mar-2008) (Proof shortened by Mario Carneiro , 16-Jun-2014)
Ref
Expression
Assertion
icoun
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ ℝ * ∧ A ≤ B ∧ B ≤ C → A B ∪ B C = A C
Proof
Step
Hyp
Ref
Expression
1
df-ico
⊢ . = x ∈ ℝ * , y ∈ ℝ * ⟼ z ∈ ℝ * | x ≤ z ∧ z < y
2
xrlenlt
⊢ B ∈ ℝ * ∧ w ∈ ℝ * → B ≤ w ↔ ¬ w < B
3
xrltletr
⊢ w ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ ℝ * → w < B ∧ B ≤ C → w < C
4
xrletr
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ w ∈ ℝ * → A ≤ B ∧ B ≤ w → A ≤ w
5
1 1 2 1 3 4
ixxun
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ ℝ * ∧ A ≤ B ∧ B ≤ C → A B ∪ B C = A C