This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
icossico
Metamath Proof Explorer
Description: Condition for a closed-below, open-above interval to be a subset of a
closed-below, open-above interval. (Contributed by Thierry Arnoux , 21-Sep-2017)
Ref
Expression
Assertion
icossico
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ A ≤ C ∧ D ≤ B → C D ⊆ A B
Proof
Step
Hyp
Ref
Expression
1
df-ico
⊢ . = x ∈ ℝ * , y ∈ ℝ * ⟼ z ∈ ℝ * | x ≤ z ∧ z < y
2
xrletr
⊢ A ∈ ℝ * ∧ C ∈ ℝ * ∧ w ∈ ℝ * → A ≤ C ∧ C ≤ w → A ≤ w
3
xrltletr
⊢ w ∈ ℝ * ∧ D ∈ ℝ * ∧ B ∈ ℝ * → w < D ∧ D ≤ B → w < B
4
1 1 2 3
ixxss12
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ A ≤ C ∧ D ≤ B → C D ⊆ A B