This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Orthocomplements
hhssbnOLD
Metamath Proof Explorer
Description: Obsolete version of cssbn : Banach space property of a closed
subspace. (Contributed by NM , 10-Apr-2008)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
hhssbnOLD.1
⊢ W = + ℎ ↾ H × H ⋅ ℎ ↾ ℂ × H norm ℎ ↾ H
hhssbnOLD.2
⊢ H ∈ C ℋ
Assertion
hhssbnOLD
⊢ W ∈ CBan
Proof
Step
Hyp
Ref
Expression
1
hhssbnOLD.1
⊢ W = + ℎ ↾ H × H ⋅ ℎ ↾ ℂ × H norm ℎ ↾ H
2
hhssbnOLD.2
⊢ H ∈ C ℋ
3
2
chshii
⊢ H ∈ S ℋ
4
1 3
hhssnv
⊢ W ∈ NrmCVec
5
eqid
⊢ IndMet ⁡ W = IndMet ⁡ W
6
1 5 2
hhsscms
⊢ IndMet ⁡ W ∈ CMet ⁡ H
7
1 3
hhssba
⊢ H = BaseSet ⁡ W
8
7 5
iscbn
⊢ W ∈ CBan ↔ W ∈ NrmCVec ∧ IndMet ⁡ W ∈ CMet ⁡ H
9
4 6 8
mpbir2an
⊢ W ∈ CBan