This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Cauchy sequences and completeness axiom
Cauchy sequences and limits
hcauseq
Metamath Proof Explorer
Description: A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM , 16-Aug-1999) (Revised by Mario Carneiro , 14-May-2014)
(New usage is discouraged.)
Ref
Expression
Assertion
hcauseq
⊢ F ∈ Cauchy → F : ℕ ⟶ ℋ
Proof
Step
Hyp
Ref
Expression
1
hcau
⊢ F ∈ Cauchy ↔ F : ℕ ⟶ ℋ ∧ ∀ x ∈ ℝ + ∃ y ∈ ℕ ∀ z ∈ ℤ ≥ y norm ℎ ⁡ F ⁡ y - ℎ F ⁡ z < x
2
1
simplbi
⊢ F ∈ Cauchy → F : ℕ ⟶ ℋ