This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem hbn

Description: If x is not free in ph , it is not free in -. ph . (Contributed by NM, 10-Jan-1993) (Proof shortened by Wolf Lammen, 17-Dec-2017)

Ref Expression
Hypothesis hbn.1 φ x φ
Assertion hbn ¬ φ x ¬ φ

Proof

Step Hyp Ref Expression
1 hbn.1 φ x φ
2 hbnt x φ x φ ¬ φ x ¬ φ
3 2 1 mpg ¬ φ x ¬ φ