This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Conventional Metamath proofs, some derived from VD proofs
hbalg
Metamath Proof Explorer
Description: Closed form of hbal . Derived from hbalgVD . (Contributed by Alan
Sare , 8-Feb-2014) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
hbalg
⊢ ∀ y φ → ∀ x φ → ∀ y ∀ y φ → ∀ x ∀ y φ
Proof
Step
Hyp
Ref
Expression
1
alim
⊢ ∀ y φ → ∀ x φ → ∀ y φ → ∀ y ∀ x φ
2
ax-11
⊢ ∀ y ∀ x φ → ∀ x ∀ y φ
3
1 2
syl6
⊢ ∀ y φ → ∀ x φ → ∀ y φ → ∀ x ∀ y φ
4
3
axc4i
⊢ ∀ y φ → ∀ x φ → ∀ y ∀ y φ → ∀ x ∀ y φ