This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem hasheqf1o

Description: The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017)

Ref Expression
Assertion hasheqf1o A Fin B Fin A = B f f : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 hashen A Fin B Fin A = B A B
2 bren A B f f : A 1-1 onto B
3 1 2 bitrdi A Fin B Fin A = B f f : A 1-1 onto B