This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Hartogs function
harndom
Metamath Proof Explorer
Description: The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear , 11-Feb-2015) (Revised by Mario Carneiro , 15-May-2015)
Ref
Expression
Assertion
harndom
⊢ ¬ har ⁡ X ≼ X
Proof
Step
Hyp
Ref
Expression
1
harcl
⊢ har ⁡ X ∈ On
2
1
onirri
⊢ ¬ har ⁡ X ∈ har ⁡ X
3
elharval
⊢ har ⁡ X ∈ har ⁡ X ↔ har ⁡ X ∈ On ∧ har ⁡ X ≼ X
4
1 3
mpbiran
⊢ har ⁡ X ∈ har ⁡ X ↔ har ⁡ X ≼ X
5
2 4
mtbi
⊢ ¬ har ⁡ X ≼ X