This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem harf

Description: Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion harf har : V On

Proof

Step Hyp Ref Expression
1 df-har har = x V y On | y x
2 hartogs x V y On | y x On
3 1 2 fmpti har : V On