This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumres
Metamath Proof Explorer
Description: Extend a finite group sum by padding outside with zeroes.
(Contributed by Mario Carneiro , 15-Dec-2014) (Revised by Mario
Carneiro , 24-Apr-2016) (Revised by AV , 3-Jun-2019)
Ref
Expression
Hypotheses
gsumcl.b
⊢ B = Base G
gsumcl.z
⊢ 0 ˙ = 0 G
gsumcl.g
⊢ φ → G ∈ CMnd
gsumcl.a
⊢ φ → A ∈ V
gsumcl.f
⊢ φ → F : A ⟶ B
gsumres.s
⊢ φ → F supp 0 ˙ ⊆ W
gsumres.w
⊢ φ → finSupp 0 ˙ ⁡ F
Assertion
gsumres
⊢ φ → ∑ G F ↾ W = ∑ G F
Proof
Step
Hyp
Ref
Expression
1
gsumcl.b
⊢ B = Base G
2
gsumcl.z
⊢ 0 ˙ = 0 G
3
gsumcl.g
⊢ φ → G ∈ CMnd
4
gsumcl.a
⊢ φ → A ∈ V
5
gsumcl.f
⊢ φ → F : A ⟶ B
6
gsumres.s
⊢ φ → F supp 0 ˙ ⊆ W
7
gsumres.w
⊢ φ → finSupp 0 ˙ ⁡ F
8
eqid
⊢ Cntz ⁡ G = Cntz ⁡ G
9
cmnmnd
⊢ G ∈ CMnd → G ∈ Mnd
10
3 9
syl
⊢ φ → G ∈ Mnd
11
1 8 3 5
cntzcmnf
⊢ φ → ran ⁡ F ⊆ Cntz ⁡ G ⁡ ran ⁡ F
12
1 2 8 10 4 5 11 6 7
gsumzres
⊢ φ → ∑ G F ↾ W = ∑ G F