This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
ghmabl
Metamath Proof Explorer
Description: The image of an abelian group G under a group homomorphism F is
an abelian group. (Contributed by Mario Carneiro , 12-May-2014)
(Revised by Thierry Arnoux , 26-Jan-2020)
Ref
Expression
Hypotheses
ghmabl.x
⊢ X = Base G
ghmabl.y
⊢ Y = Base H
ghmabl.p
⊢ + ˙ = + G
ghmabl.q
⊢ ⨣ ˙ = + H
ghmabl.f
⊢ φ ∧ x ∈ X ∧ y ∈ X → F ⁡ x + ˙ y = F ⁡ x ⨣ ˙ F ⁡ y
ghmabl.1
⊢ φ → F : X ⟶ onto Y
ghmabl.3
⊢ φ → G ∈ Abel
Assertion
ghmabl
⊢ φ → H ∈ Abel
Proof
Step
Hyp
Ref
Expression
1
ghmabl.x
⊢ X = Base G
2
ghmabl.y
⊢ Y = Base H
3
ghmabl.p
⊢ + ˙ = + G
4
ghmabl.q
⊢ ⨣ ˙ = + H
5
ghmabl.f
⊢ φ ∧ x ∈ X ∧ y ∈ X → F ⁡ x + ˙ y = F ⁡ x ⨣ ˙ F ⁡ y
6
ghmabl.1
⊢ φ → F : X ⟶ onto Y
7
ghmabl.3
⊢ φ → G ∈ Abel
8
ablgrp
⊢ G ∈ Abel → G ∈ Grp
9
7 8
syl
⊢ φ → G ∈ Grp
10
5 1 2 3 4 6 9
ghmgrp
⊢ φ → H ∈ Grp
11
ablcmn
⊢ G ∈ Abel → G ∈ CMnd
12
7 11
syl
⊢ φ → G ∈ CMnd
13
1 2 3 4 5 6 12
ghmcmn
⊢ φ → H ∈ CMnd
14
isabl
⊢ H ∈ Abel ↔ H ∈ Grp ∧ H ∈ CMnd
15
10 13 14
sylanbrc
⊢ φ → H ∈ Abel