This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvresval
Metamath Proof Explorer
Description: The value of a restricted function at a class is either the empty set or
the value of the unrestricted function at that class. (Contributed by Scott Fenton , 4-Sep-2011)
Ref
Expression
Assertion
fvresval
⊢ F ↾ B ⁡ A = F ⁡ A ∨ F ↾ B ⁡ A = ∅
Proof
Step
Hyp
Ref
Expression
1
exmid
⊢ A ∈ B ∨ ¬ A ∈ B
2
fvres
⊢ A ∈ B → F ↾ B ⁡ A = F ⁡ A
3
nfvres
⊢ ¬ A ∈ B → F ↾ B ⁡ A = ∅
4
2 3
orim12i
⊢ A ∈ B ∨ ¬ A ∈ B → F ↾ B ⁡ A = F ⁡ A ∨ F ↾ B ⁡ A = ∅
5
1 4
ax-mp
⊢ F ↾ B ⁡ A = F ⁡ A ∨ F ↾ B ⁡ A = ∅