This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvmpts
Metamath Proof Explorer
Description: Value of a function given in maps-to notation, using explicit class
substitution. (Contributed by Scott Fenton , 17-Jul-2013) (Revised by Mario Carneiro , 31-Aug-2015)
Ref
Expression
Hypothesis
fvmpts.1
⊢ F = x ∈ C ⟼ B
Assertion
fvmpts
⊢ A ∈ C ∧ ⦋ A / x ⦌ B ∈ V → F ⁡ A = ⦋ A / x ⦌ B
Proof
Step
Hyp
Ref
Expression
1
fvmpts.1
⊢ F = x ∈ C ⟼ B
2
csbeq1
⊢ y = A → ⦋ y / x ⦌ B = ⦋ A / x ⦌ B
3
nfcv
⊢ Ⅎ _ y B
4
nfcsb1v
⊢ Ⅎ _ x ⦋ y / x ⦌ B
5
csbeq1a
⊢ x = y → B = ⦋ y / x ⦌ B
6
3 4 5
cbvmpt
⊢ x ∈ C ⟼ B = y ∈ C ⟼ ⦋ y / x ⦌ B
7
1 6
eqtri
⊢ F = y ∈ C ⟼ ⦋ y / x ⦌ B
8
2 7
fvmptg
⊢ A ∈ C ∧ ⦋ A / x ⦌ B ∈ V → F ⁡ A = ⦋ A / x ⦌ B