This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvelima
Metamath Proof Explorer
Description: Function value in an image. Part of Theorem 4.4(iii) of Monk1 p. 42.
(Contributed by NM , 29-Apr-2004) (Proof shortened by Andrew Salmon , 22-Oct-2011)
Ref
Expression
Assertion
fvelima
⊢ Fun ⁡ F ∧ A ∈ F B → ∃ x ∈ B F ⁡ x = A
Proof
Step
Hyp
Ref
Expression
1
funbrfv
⊢ Fun ⁡ F → x F A → F ⁡ x = A
2
1
reximdv
⊢ Fun ⁡ F → ∃ x ∈ B x F A → ∃ x ∈ B F ⁡ x = A
3
elimag
⊢ A ∈ F B → A ∈ F B ↔ ∃ x ∈ B x F A
4
3
ibi
⊢ A ∈ F B → ∃ x ∈ B x F A
5
2 4
impel
⊢ Fun ⁡ F ∧ A ∈ F B → ∃ x ∈ B F ⁡ x = A