This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvbr0
Metamath Proof Explorer
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear , 2-Nov-2014) (Proof shortened by Mario Carneiro , 31-Aug-2015)
Ref
Expression
Assertion
fvbr0
⊢ X F F ⁡ X ∨ F ⁡ X = ∅
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ F ⁡ X = F ⁡ X
2
tz6.12i
⊢ F ⁡ X ≠ ∅ → F ⁡ X = F ⁡ X → X F F ⁡ X
3
1 2
mpi
⊢ F ⁡ X ≠ ∅ → X F F ⁡ X
4
3
necon1bi
⊢ ¬ X F F ⁡ X → F ⁡ X = ∅
5
4
orri
⊢ X F F ⁡ X ∨ F ⁡ X = ∅