This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fununmo
Metamath Proof Explorer
Description: If the union of classes is a function, there is at most one element in
relation to an arbitrary element regarding one of these classes.
(Contributed by AV , 18-Jul-2019)
Ref
Expression
Assertion
fununmo
⊢ Fun ⁡ F ∪ G → ∃ * y x F y
Proof
Step
Hyp
Ref
Expression
1
funmo
⊢ Fun ⁡ F ∪ G → ∃ * y x F ∪ G y
2
orc
⊢ x F y → x F y ∨ x G y
3
brun
⊢ x F ∪ G y ↔ x F y ∨ x G y
4
2 3
sylibr
⊢ x F y → x F ∪ G y
5
4
moimi
⊢ ∃ * y x F ∪ G y → ∃ * y x F y
6
1 5
syl
⊢ Fun ⁡ F ∪ G → ∃ * y x F y