This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funiunfvf
Metamath Proof Explorer
Description: The indexed union of a function's values is the union of its image under
the index class. This version of funiunfv uses a bound-variable
hypothesis in place of a distinct variable condition. (Contributed by NM , 26-Mar-2006) (Revised by David Abernethy , 15-Apr-2013)
Ref
Expression
Hypothesis
funiunfvf.1
⊢ Ⅎ _ x F
Assertion
funiunfvf
⊢ Fun ⁡ F → ⋃ x ∈ A F ⁡ x = ⋃ F A
Proof
Step
Hyp
Ref
Expression
1
funiunfvf.1
⊢ Ⅎ _ x F
2
nfcv
⊢ Ⅎ _ x z
3
1 2
nffv
⊢ Ⅎ _ x F ⁡ z
4
nfcv
⊢ Ⅎ _ z F ⁡ x
5
fveq2
⊢ z = x → F ⁡ z = F ⁡ x
6
3 4 5
cbviun
⊢ ⋃ z ∈ A F ⁡ z = ⋃ x ∈ A F ⁡ x
7
funiunfv
⊢ Fun ⁡ F → ⋃ z ∈ A F ⁡ z = ⋃ F A
8
6 7
eqtr3id
⊢ Fun ⁡ F → ⋃ x ∈ A F ⁡ x = ⋃ F A