This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Vertices and edges
Vertices and indexed edges
The vertices and edges of a graph represented as extensible structure
funiedgdm2val
Metamath Proof Explorer
Description: The set of indexed edges of an extensible structure with (at least) two
slots. (Contributed by AV , 22-Sep-2020) (Revised by AV , 7-Jun-2021)
(Revised by AV , 12-Nov-2021)
Ref
Expression
Hypotheses
funvtxdm2val.a
⊢ A ∈ V
funvtxdm2val.b
⊢ B ∈ V
Assertion
funiedgdm2val
⊢ Fun ⁡ G ∖ ∅ ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → iEdg ⁡ G = ef ⁡ G
Proof
Step
Hyp
Ref
Expression
1
funvtxdm2val.a
⊢ A ∈ V
2
funvtxdm2val.b
⊢ B ∈ V
3
iedgval
⊢ iEdg ⁡ G = if G ∈ V × V 2 nd ⁡ G ef ⁡ G
4
1 2
fun2dmnop0
⊢ Fun ⁡ G ∖ ∅ ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → ¬ G ∈ V × V
5
4
iffalsed
⊢ Fun ⁡ G ∖ ∅ ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → if G ∈ V × V 2 nd ⁡ G ef ⁡ G = ef ⁡ G
6
3 5
eqtrid
⊢ Fun ⁡ G ∖ ∅ ∧ A ≠ B ∧ A B ⊆ dom ⁡ G → iEdg ⁡ G = ef ⁡ G