This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funfv2f
Metamath Proof Explorer
Description: The value of a function. Version of funfv2 using a bound-variable
hypotheses instead of distinct variable conditions. (Contributed by NM , 19-Feb-2006)
Ref
Expression
Hypotheses
funfv2f.1
⊢ Ⅎ _ y A
funfv2f.2
⊢ Ⅎ _ y F
Assertion
funfv2f
⊢ Fun ⁡ F → F ⁡ A = ⋃ y | A F y
Proof
Step
Hyp
Ref
Expression
1
funfv2f.1
⊢ Ⅎ _ y A
2
funfv2f.2
⊢ Ⅎ _ y F
3
funfv2
⊢ Fun ⁡ F → F ⁡ A = ⋃ w | A F w
4
nfcv
⊢ Ⅎ _ y w
5
1 2 4
nfbr
⊢ Ⅎ y A F w
6
nfv
⊢ Ⅎ w A F y
7
breq2
⊢ w = y → A F w ↔ A F y
8
5 6 7
cbvabw
⊢ w | A F w = y | A F y
9
8
unieqi
⊢ ⋃ w | A F w = ⋃ y | A F y
10
3 9
eqtrdi
⊢ Fun ⁡ F → F ⁡ A = ⋃ y | A F y