This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem funALTVeqd

Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013)

Ref Expression
Hypothesis funALTVeqd.1 φ A = B
Assertion funALTVeqd φ FunALTV A FunALTV B

Proof

Step Hyp Ref Expression
1 funALTVeqd.1 φ A = B
2 funALTVeq A = B FunALTV A FunALTV B
3 1 2 syl φ FunALTV A FunALTV B