This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Well-Founded Induction schema, using implicit substitution.
(Contributed by Scott Fenton, 19-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
frpoins3g.1 |
|
|
|
frpoins3g.2 |
|
|
|
frpoins3g.3 |
|
|
Assertion |
frpoins3g |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frpoins3g.1 |
|
| 2 |
|
frpoins3g.2 |
|
| 3 |
|
frpoins3g.3 |
|
| 4 |
1 2
|
frpoins2g |
|
| 5 |
3
|
rspccva |
|
| 6 |
4 5
|
sylan |
|