This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprod0diag
Metamath Proof Explorer
Description: Two ways to express "the product of A ( j , k ) over the triangular
region M <_ j , M <_ k , j + k <_ N . Compare fsum0diag .
(Contributed by Scott Fenton , 2-Feb-2018)
Ref
Expression
Hypothesis
fprod0diag.1
⊢ φ ∧ j ∈ 0 … N ∧ k ∈ 0 … N − j → A ∈ ℂ
Assertion
fprod0diag
⊢ φ → ∏ j = 0 N ∏ k = 0 N − j A = ∏ k = 0 N ∏ j = 0 N − k A
Proof
Step
Hyp
Ref
Expression
1
fprod0diag.1
⊢ φ ∧ j ∈ 0 … N ∧ k ∈ 0 … N − j → A ∈ ℂ
2
fzfid
⊢ φ → 0 … N ∈ Fin
3
fzfid
⊢ φ ∧ j ∈ 0 … N → 0 … N − j ∈ Fin
4
fsum0diaglem
⊢ j ∈ 0 … N ∧ k ∈ 0 … N − j → k ∈ 0 … N ∧ j ∈ 0 … N − k
5
fsum0diaglem
⊢ k ∈ 0 … N ∧ j ∈ 0 … N − k → j ∈ 0 … N ∧ k ∈ 0 … N − j
6
4 5
impbii
⊢ j ∈ 0 … N ∧ k ∈ 0 … N − j ↔ k ∈ 0 … N ∧ j ∈ 0 … N − k
7
6
a1i
⊢ φ → j ∈ 0 … N ∧ k ∈ 0 … N − j ↔ k ∈ 0 … N ∧ j ∈ 0 … N − k
8
2 2 3 7 1
fprodcom2
⊢ φ → ∏ j = 0 N ∏ k = 0 N − j A = ∏ k = 0 N ∏ j = 0 N − k A