This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem fnoprab

Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis fnoprab.1 φ ∃! z ψ
Assertion fnoprab x y z | φ ψ Fn x y | φ

Proof

Step Hyp Ref Expression
1 fnoprab.1 φ ∃! z ψ
2 1 gen2 x y φ ∃! z ψ
3 fnoprabg x y φ ∃! z ψ x y z | φ ψ Fn x y | φ
4 2 3 ax-mp x y z | φ ψ Fn x y | φ