This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finitely supported functions
fmptssfisupp
Metamath Proof Explorer
Description: The restriction of a mapping function has finite support if that
function has finite support. (Contributed by Thierry Arnoux , 21-Jan-2024)
Ref
Expression
Hypotheses
fmptssfisupp.1
⊢ φ → finSupp Z ⁡ x ∈ A ⟼ B
fmptssfisupp.2
⊢ φ → C ⊆ A
fmptssfisupp.3
⊢ φ → Z ∈ V
Assertion
fmptssfisupp
⊢ φ → finSupp Z ⁡ x ∈ C ⟼ B
Proof
Step
Hyp
Ref
Expression
1
fmptssfisupp.1
⊢ φ → finSupp Z ⁡ x ∈ A ⟼ B
2
fmptssfisupp.2
⊢ φ → C ⊆ A
3
fmptssfisupp.3
⊢ φ → Z ∈ V
4
2
resmptd
⊢ φ → x ∈ A ⟼ B ↾ C = x ∈ C ⟼ B
5
1 3
fsuppres
⊢ φ → finSupp Z ⁡ x ∈ A ⟼ B ↾ C
6
4 5
eqbrtrrd
⊢ φ → finSupp Z ⁡ x ∈ C ⟼ B