This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
flcl
Metamath Proof Explorer
Description: The floor (greatest integer) function is an integer (closure law).
(Contributed by NM , 15-Nov-2004) (Revised by Mario Carneiro , 2-Nov-2013)
Ref
Expression
Assertion
flcl
⊢ A ∈ ℝ → A ∈ ℤ
Proof
Step
Hyp
Ref
Expression
1
flval
⊢ A ∈ ℝ → A = ι x ∈ ℤ | x ≤ A ∧ A < x + 1
2
rebtwnz
⊢ A ∈ ℝ → ∃! x ∈ ℤ x ≤ A ∧ A < x + 1
3
riotacl
⊢ ∃! x ∈ ℤ x ≤ A ∧ A < x + 1 → ι x ∈ ℤ | x ≤ A ∧ A < x + 1 ∈ ℤ
4
2 3
syl
⊢ A ∈ ℝ → ι x ∈ ℤ | x ≤ A ∧ A < x + 1 ∈ ℤ
5
1 4
eqeltrd
⊢ A ∈ ℝ → A ∈ ℤ