This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem fitop

Description: A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009)

Ref Expression
Assertion fitop J Top fi J = J

Proof

Step Hyp Ref Expression
1 inopn J Top x J y J x y J
2 1 3expib J Top x J y J x y J
3 2 ralrimivv J Top x J y J x y J
4 inficl J Top x J y J x y J fi J = J
5 3 4 mpbid J Top fi J = J