This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem fingch

Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion fingch Fin GCH

Proof

Step Hyp Ref Expression
1 ssun1 Fin Fin x | y ¬ x y y 𝒫 x
2 df-gch GCH = Fin x | y ¬ x y y 𝒫 x
3 1 2 sseqtrri Fin GCH