This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem fin34i

Description: Inference from isfin3-4 . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin34i A FinIII G : ω 𝒫 A x ω G x G suc x ran G ran G

Proof

Step Hyp Ref Expression
1 eqid y 𝒫 A A y = y 𝒫 A A y
2 1 isf34lem7 A FinIII G : ω 𝒫 A x ω G x G suc x ran G ran G