This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Filters and filter bases
Ultrafilters
filssufil
Metamath Proof Explorer
Description: A filter is contained in some ultrafilter. (Requires the Axiom of
Choice, via numth3 .) (Contributed by Jeff Hankins , 2-Dec-2009)
(Revised by Stefan O'Rear , 29-Jul-2015)
Ref
Expression
Assertion
filssufil
⊢ F ∈ Fil ⁡ X → ∃ f ∈ UFil ⁡ X F ⊆ f
Proof
Step
Hyp
Ref
Expression
1
filtop
⊢ F ∈ Fil ⁡ X → X ∈ F
2
pwexg
⊢ X ∈ F → 𝒫 X ∈ V
3
pwexg
⊢ 𝒫 X ∈ V → 𝒫 𝒫 X ∈ V
4
numth3
⊢ 𝒫 𝒫 X ∈ V → 𝒫 𝒫 X ∈ dom ⁡ card
5
1 2 3 4
4syl
⊢ F ∈ Fil ⁡ X → 𝒫 𝒫 X ∈ dom ⁡ card
6
filssufilg
⊢ F ∈ Fil ⁡ X ∧ 𝒫 𝒫 X ∈ dom ⁡ card → ∃ f ∈ UFil ⁡ X F ⊆ f
7
5 6
mpdan
⊢ F ∈ Fil ⁡ X → ∃ f ∈ UFil ⁡ X F ⊆ f