This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem filfbas

Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion filfbas F Fil X F fBas X

Proof

Step Hyp Ref Expression
1 isfil F Fil X F fBas X x 𝒫 X F 𝒫 x x F
2 1 simplbi F Fil X F fBas X