This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Topological bases
fibas
Metamath Proof Explorer
Description: A collection of finite intersections is a basis. The initial set is a
subbasis for the topology. (Contributed by Jeff Hankins , 25-Aug-2009)
(Revised by Mario Carneiro , 24-Nov-2013)
Ref
Expression
Assertion
fibas
⊢ fi ⁡ A ∈ TopBases
Proof
Step
Hyp
Ref
Expression
1
fvex
⊢ fi ⁡ A ∈ V
2
fiin
⊢ x ∈ fi ⁡ A ∧ y ∈ fi ⁡ A → x ∩ y ∈ fi ⁡ A
3
2
rgen2
⊢ ∀ x ∈ fi ⁡ A ∀ y ∈ fi ⁡ A x ∩ y ∈ fi ⁡ A
4
fiinbas
⊢ fi ⁡ A ∈ V ∧ ∀ x ∈ fi ⁡ A ∀ y ∈ fi ⁡ A x ∩ y ∈ fi ⁡ A → fi ⁡ A ∈ TopBases
5
1 3 4
mp2an
⊢ fi ⁡ A ∈ TopBases