This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ffdmd

Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis ffdmd.1 φ F : A B
Assertion ffdmd φ F : dom F B

Proof

Step Hyp Ref Expression
1 ffdmd.1 φ F : A B
2 ffdm F : A B F : dom F B dom F A
3 1 2 syl φ F : dom F B dom F A
4 3 simpld φ F : dom F B