This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The support of a function with a finite domain is always finite.
(Contributed by AV, 27-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fdmfisuppfi.f |
|
|
|
fdmfisuppfi.d |
|
|
|
fdmfisuppfi.z |
|
|
Assertion |
fdmfisuppfi |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdmfisuppfi.f |
|
| 2 |
|
fdmfisuppfi.d |
|
| 3 |
|
fdmfisuppfi.z |
|
| 4 |
1 2
|
fexd |
|
| 5 |
|
suppimacnv |
|
| 6 |
4 3 5
|
syl2anc |
|
| 7 |
2 1
|
fisuppfi |
|
| 8 |
6 7
|
eqeltrd |
|