This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Examples of topologies
fctop2
Metamath Proof Explorer
Description: The finite complement topology on a set A . Example 3 in Munkres
p. 77. (This version of fctop requires the Axiom of Infinity.)
(Contributed by FL , 20-Aug-2006)
Ref
Expression
Assertion
fctop2
⊢ A ∈ V → x ∈ 𝒫 A | A ∖ x ≺ ω ∨ x = ∅ ∈ TopOn ⁡ A
Proof
Step
Hyp
Ref
Expression
1
isfinite
⊢ A ∖ x ∈ Fin ↔ A ∖ x ≺ ω
2
1
orbi1i
⊢ A ∖ x ∈ Fin ∨ x = ∅ ↔ A ∖ x ≺ ω ∨ x = ∅
3
2
rabbii
⊢ x ∈ 𝒫 A | A ∖ x ∈ Fin ∨ x = ∅ = x ∈ 𝒫 A | A ∖ x ≺ ω ∨ x = ∅
4
fctop
⊢ A ∈ V → x ∈ 𝒫 A | A ∖ x ∈ Fin ∨ x = ∅ ∈ TopOn ⁡ A
5
3 4
eqeltrrid
⊢ A ∈ V → x ∈ 𝒫 A | A ∖ x ≺ ω ∨ x = ∅ ∈ TopOn ⁡ A