This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem fbelss

Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbelss F fBas B X F X B

Proof

Step Hyp Ref Expression
1 fbsspw F fBas B F 𝒫 B
2 1 sselda F fBas B X F X 𝒫 B
3 2 elpwid F fBas B X F X B