This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1oiOLD
Metamath Proof Explorer
Description: Obsolete version of f1oi as of 10-Feb-2026. (Contributed by NM , 30-Apr-1998) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
f1oiOLD
⊢ I ↾ A : A ⟶ 1-1 onto A
Proof
Step
Hyp
Ref
Expression
1
fnresi
⊢ I ↾ A Fn A
2
cnvresid
⊢ I ↾ A -1 = I ↾ A
3
2
fneq1i
⊢ I ↾ A -1 Fn A ↔ I ↾ A Fn A
4
1 3
mpbir
⊢ I ↾ A -1 Fn A
5
dff1o4
⊢ I ↾ A : A ⟶ 1-1 onto A ↔ I ↾ A Fn A ∧ I ↾ A -1 Fn A
6
1 4 5
mpbir2an
⊢ I ↾ A : A ⟶ 1-1 onto A