This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Example for df-fv . Example by David A. Wheeler. (Contributed by Mario
Carneiro, 7-May-2015)
|
|
Ref |
Expression |
|
Assertion |
ex-fv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq1 |
|
| 2 |
|
2re |
|
| 3 |
|
2lt3 |
|
| 4 |
2 3
|
ltneii |
|
| 5 |
|
3ex |
|
| 6 |
|
9re |
|
| 7 |
6
|
elexi |
|
| 8 |
5 7
|
fvpr2 |
|
| 9 |
4 8
|
ax-mp |
|
| 10 |
1 9
|
eqtrdi |
|