This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
eusvobj1
Metamath Proof Explorer
Description: Specify the same object in two ways when class B ( y ) is
single-valued. (Contributed by NM , 1-Nov-2010) (Proof shortened by Mario Carneiro , 19-Nov-2016)
Ref
Expression
Hypothesis
eusvobj1.1
⊢ B ∈ V
Assertion
eusvobj1
⊢ ∃! x ∃ y ∈ A x = B → ι x | ∃ y ∈ A x = B = ι x | ∀ y ∈ A x = B
Proof
Step
Hyp
Ref
Expression
1
eusvobj1.1
⊢ B ∈ V
2
nfeu1
⊢ Ⅎ x ∃! x ∃ y ∈ A x = B
3
1
eusvobj2
⊢ ∃! x ∃ y ∈ A x = B → ∃ y ∈ A x = B ↔ ∀ y ∈ A x = B
4
2 3
alrimi
⊢ ∃! x ∃ y ∈ A x = B → ∀ x ∃ y ∈ A x = B ↔ ∀ y ∈ A x = B
5
iotabi
⊢ ∀ x ∃ y ∈ A x = B ↔ ∀ y ∈ A x = B → ι x | ∃ y ∈ A x = B = ι x | ∀ y ∈ A x = B
6
4 5
syl
⊢ ∃! x ∃ y ∈ A x = B → ι x | ∃ y ∈ A x = B = ι x | ∀ y ∈ A x = B