This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
eu2
Metamath Proof Explorer
Theorem eu2
Description: An alternate way of defining existential uniqueness. Definition 6.10 of
TakeutiZaring p. 26. (Contributed by NM , 8-Jul-1994) (Proof
shortened by Wolf Lammen , 2-Dec-2018)
Ref
Expression
Hypothesis
eu2.nf
⊢ Ⅎ y φ
Assertion
eu2
⊢ ∃! x φ ↔ ∃ x φ ∧ ∀ x ∀ y φ ∧ y x φ → x = y
Proof
Step
Hyp
Ref
Expression
1
eu2.nf
⊢ Ⅎ y φ
2
df-eu
⊢ ∃! x φ ↔ ∃ x φ ∧ ∃ * x φ
3
1
mo3
⊢ ∃ * x φ ↔ ∀ x ∀ y φ ∧ y x φ → x = y
4
3
anbi2i
⊢ ∃ x φ ∧ ∃ * x φ ↔ ∃ x φ ∧ ∀ x ∀ y φ ∧ y x φ → x = y
5
2 4
bitri
⊢ ∃! x φ ↔ ∃ x φ ∧ ∀ x ∀ y φ ∧ y x φ → x = y