This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered-pair class abstractions (cont.)
eqopab2bw
Metamath Proof Explorer
Description: Equivalence of ordered pair abstraction equality and biconditional.
Version of eqopab2b with a disjoint variable condition, which does not
require ax-13 . (Contributed by Mario Carneiro , 4-Jan-2017) Avoid
ax-13 . (Revised by GG , 26-Jan-2024)
Ref
Expression
Assertion
eqopab2bw
⊢ x y | φ = x y | ψ ↔ ∀ x ∀ y φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
ssopab2bw
⊢ x y | φ ⊆ x y | ψ ↔ ∀ x ∀ y φ → ψ
2
ssopab2bw
⊢ x y | ψ ⊆ x y | φ ↔ ∀ x ∀ y ψ → φ
3
1 2
anbi12i
⊢ x y | φ ⊆ x y | ψ ∧ x y | ψ ⊆ x y | φ ↔ ∀ x ∀ y φ → ψ ∧ ∀ x ∀ y ψ → φ
4
eqss
⊢ x y | φ = x y | ψ ↔ x y | φ ⊆ x y | ψ ∧ x y | ψ ⊆ x y | φ
5
2albiim
⊢ ∀ x ∀ y φ ↔ ψ ↔ ∀ x ∀ y φ → ψ ∧ ∀ x ∀ y ψ → φ
6
3 4 5
3bitr4i
⊢ x y | φ = x y | ψ ↔ ∀ x ∀ y φ ↔ ψ