This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem entr4i

Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004)

Ref Expression
Hypotheses entr4i.1 A B
entr4i.2 C B
Assertion entr4i A C

Proof

Step Hyp Ref Expression
1 entr4i.1 A B
2 entr4i.2 C B
3 2 ensymi B C
4 1 3 entri A C