This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Introduce the Axiom of Regularity
en2lp
Metamath Proof Explorer
Description: No class has 2-cycle membership loops. Theorem 7X(b) of Enderton
p. 206. (Contributed by NM , 16-Oct-1996) (Revised by Mario Carneiro , 25-Jun-2015)
Ref
Expression
Assertion
en2lp
⊢ ¬ A ∈ B ∧ B ∈ A
Proof
Step
Hyp
Ref
Expression
1
zfregfr
⊢ E Fr V
2
efrn2lp
⊢ E Fr V ∧ A ∈ V ∧ B ∈ V → ¬ A ∈ B ∧ B ∈ A
3
1 2
mpan
⊢ A ∈ V ∧ B ∈ V → ¬ A ∈ B ∧ B ∈ A
4
elex
⊢ A ∈ B → A ∈ V
5
elex
⊢ B ∈ A → B ∈ V
6
4 5
anim12i
⊢ A ∈ B ∧ B ∈ A → A ∈ V ∧ B ∈ V
7
6
con3i
⊢ ¬ A ∈ V ∧ B ∈ V → ¬ A ∈ B ∧ B ∈ A
8
3 7
pm2.61i
⊢ ¬ A ∈ B ∧ B ∈ A