This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
elunirnALT
Metamath Proof Explorer
Description: Alternate proof of elunirn . It is shorter but requires ax-pow (through eluniima , funiunfv , ndmfv ). (Contributed by NM , 24-Sep-2006) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
elunirnALT
⊢ Fun ⁡ F → A ∈ ⋃ ran ⁡ F ↔ ∃ x ∈ dom ⁡ F A ∈ F ⁡ x
Proof
Step
Hyp
Ref
Expression
1
imadmrn
⊢ F dom ⁡ F = ran ⁡ F
2
1
unieqi
⊢ ⋃ F dom ⁡ F = ⋃ ran ⁡ F
3
2
eleq2i
⊢ A ∈ ⋃ F dom ⁡ F ↔ A ∈ ⋃ ran ⁡ F
4
eluniima
⊢ Fun ⁡ F → A ∈ ⋃ F dom ⁡ F ↔ ∃ x ∈ dom ⁡ F A ∈ F ⁡ x
5
3 4
bitr3id
⊢ Fun ⁡ F → A ∈ ⋃ ran ⁡ F ↔ ∃ x ∈ dom ⁡ F A ∈ F ⁡ x