This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Transitivity
eltrrelsrel
Metamath Proof Explorer
Description: For sets, being an element of the class of transitive relations is
equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa , 22-Aug-2021)
Ref
Expression
Assertion
eltrrelsrel
⊢ R ∈ V → R ∈ TrRels ↔ TrRel R
Proof
Step
Hyp
Ref
Expression
1
elrelsrel
⊢ R ∈ V → R ∈ Rels ↔ Rel ⁡ R
2
1
anbi2d
⊢ R ∈ V → R ∘ R ⊆ R ∧ R ∈ Rels ↔ R ∘ R ⊆ R ∧ Rel ⁡ R
3
eltrrels2
⊢ R ∈ TrRels ↔ R ∘ R ⊆ R ∧ R ∈ Rels
4
dftrrel2
⊢ TrRel R ↔ R ∘ R ⊆ R ∧ Rel ⁡ R
5
2 3 4
3bitr4g
⊢ R ∈ V → R ∈ TrRels ↔ TrRel R