This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A morphism of sets is a function. (Contributed by Mario Carneiro, 3-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
setcbas.c |
|
|
|
setcbas.u |
|
|
|
setchomfval.h |
|
|
|
setchom.x |
|
|
|
setchom.y |
|
|
Assertion |
elsetchom |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setcbas.c |
|
| 2 |
|
setcbas.u |
|
| 3 |
|
setchomfval.h |
|
| 4 |
|
setchom.x |
|
| 5 |
|
setchom.y |
|
| 6 |
1 2 3 4 5
|
setchom |
|
| 7 |
6
|
eleq2d |
|
| 8 |
5 4
|
elmapd |
|
| 9 |
7 8
|
bitrd |
|