This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elrid
Metamath Proof Explorer
Description: Characterization of the elements of a restricted identity relation.
(Contributed by BJ , 28-Aug-2022) (Proof shortened by Peter Mazsa , 9-Sep-2022)
Ref
Expression
Assertion
elrid
⊢ A ∈ I ↾ X ↔ ∃ x ∈ X A = x x
Proof
Step
Hyp
Ref
Expression
1
df-res
⊢ I ↾ X = I ∩ X × V
2
1
eleq2i
⊢ A ∈ I ↾ X ↔ A ∈ I ∩ X × V
3
elidinxp
⊢ A ∈ I ∩ X × V ↔ ∃ x ∈ X ∩ V A = x x
4
inv1
⊢ X ∩ V = X
5
4
rexeqi
⊢ ∃ x ∈ X ∩ V A = x x ↔ ∃ x ∈ X A = x x
6
2 3 5
3bitri
⊢ A ∈ I ↾ X ↔ ∃ x ∈ X A = x x