This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Maps-to notation
elovmpt3rab
Metamath Proof Explorer
Description: Implications for the value of an operation defined by the maps-to
notation with a class abstraction as a result having an element.
(Contributed by AV , 17-Jul-2018) (Revised by AV , 16-May-2019)
Ref
Expression
Hypothesis
elovmpt3rab.o
⊢ O = x ∈ V , y ∈ V ⟼ z ∈ M ⟼ a ∈ N | φ
Assertion
elovmpt3rab
⊢ M ∈ U ∧ N ∈ T → A ∈ X O Y ⁡ Z → X ∈ V ∧ Y ∈ V ∧ Z ∈ M ∧ A ∈ N
Proof
Step
Hyp
Ref
Expression
1
elovmpt3rab.o
⊢ O = x ∈ V , y ∈ V ⟼ z ∈ M ⟼ a ∈ N | φ
2
eqidd
⊢ x = X ∧ y = Y → M = M
3
eqidd
⊢ x = X ∧ y = Y → N = N
4
1 2 3
elovmpt3rab1
⊢ M ∈ U ∧ N ∈ T → A ∈ X O Y ⁡ Z → X ∈ V ∧ Y ∈ V ∧ Z ∈ M ∧ A ∈ N