This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Maps-to notation
elovmpod
Metamath Proof Explorer
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear , 21-Jan-2015) Variant of elovmpo in deduction form. (Revised by AV , 20-Apr-2025)
Ref
Expression
Hypotheses
elovmpod.o
⊢ O = a ∈ A , b ∈ B ⟼ C
elovmpod.x
⊢ φ → X ∈ A
elovmpod.y
⊢ φ → Y ∈ B
elovmpod.d
⊢ φ → D ∈ V
elovmpod.c
⊢ a = X ∧ b = Y → C = D
Assertion
elovmpod
⊢ φ → E ∈ X O Y ↔ E ∈ D
Proof
Step
Hyp
Ref
Expression
1
elovmpod.o
⊢ O = a ∈ A , b ∈ B ⟼ C
2
elovmpod.x
⊢ φ → X ∈ A
3
elovmpod.y
⊢ φ → Y ∈ B
4
elovmpod.d
⊢ φ → D ∈ V
5
elovmpod.c
⊢ a = X ∧ b = Y → C = D
6
1
a1i
⊢ φ → O = a ∈ A , b ∈ B ⟼ C
7
5
adantl
⊢ φ ∧ a = X ∧ b = Y → C = D
8
6 7 2 3 4
ovmpod
⊢ φ → X O Y = D
9
8
eleq2d
⊢ φ → E ∈ X O Y ↔ E ∈ D