This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Theorems about operators and functionals
elnlfn2
Metamath Proof Explorer
Description: Membership in the null space of a Hilbert space functional.
(Contributed by NM , 11-Feb-2006) (Revised by Mario Carneiro , 17-Nov-2013) (New usage is discouraged.)
Ref
Expression
Assertion
elnlfn2
⊢ T : ℋ ⟶ ℂ ∧ A ∈ null ⁡ T → T ⁡ A = 0
Proof
Step
Hyp
Ref
Expression
1
elnlfn
⊢ T : ℋ ⟶ ℂ → A ∈ null ⁡ T ↔ A ∈ ℋ ∧ T ⁡ A = 0
2
1
simplbda
⊢ T : ℋ ⟶ ℂ ∧ A ∈ null ⁡ T → T ⁡ A = 0